Design Specifications

Hose Bend Radius Definition

The bend radius is the radius of the bent section of hose measured to the hose center-line of the curved portion. It is important because the minimum bend radius is the maximum amount a hose can be bent without being kinked or damaged lon a single plane). A hose that has multiple bends over the same length is extremely challenging and is not addressed.

General formula to calculate bend length:
Angle of Bend
$360^{\circ} \times 2 \pi r=$ min length of hose to make bend
$r=$ given bend radius
Example:
to make a 90° bend with a hose that has a $6^{\prime \prime}$ (152.4 mm) I.D.
$r=36$ inches (941.4 mm)
$\frac{90^{\circ}}{360^{\circ}} \times 2 \times 3.14 \times 36$
$.25 \times 2 \times 3.14 \times 36=56.52$ inches (1664.21 mm)
56.52 inches is the minimum length the hose can be to bend it 90° without damaging it.

Formula to calculate bend length on a hose that has ridged couplings: (remember the hose bend should take place over the entire minimum bend length)
Angle of Bend
$\left(360^{\circ} \times 2 \pi r\right)+(2 L+h o s e ~ I D)=$ min length of hose to make bend
$L=$ Length of coupling
$r=$ given bend radius
Example:
to make a 90° bend with a hose that has a $6^{\prime \prime}(152.4 \mathrm{~mm})$ I.D.
$r=36$ inches (941.4 mm)

$$
\begin{aligned}
& \left.\frac{90^{\circ}}{\left(360^{\circ}\right.} \times 2 \times 3.14 \times 36\right)+(2 \times 12+2 \times 6) \\
& (.25 \times 2 \times 3.14 \times 36)+(24+12)=92.52 \text { inches }(2350 \mathrm{~mm})
\end{aligned}
$$

92.52 inches is the minimum length the hose assembly can be to bend it 90° without damaging it. It is always safe to add the flange thickness of each end if known.
 tel (856) $768-2275$ fox (856)768-2385 800-225-0215

